Model order reduction approaches for infinite horizon optimal control problems via the HJB equation
نویسندگان
چکیده
We investigate feedback control for infinite horizon optimal control problems for partial differential equations. The method is based on the coupling between Hamilton-Jacobi-Bellman (HJB) equations and model reduction techniques. It is well-known that HJB equations suffer the so called curse of dimensionality and, therefore, a reduction of the dimension of the system is mandatory. In this report we focus on the infinite horizon optimal control problem with quadratic cost functionals. We compare several model reduction methods such as Proper Orthogonal Decomposition, Balanced Truncation and a new algebraic Riccati equation based approach. Finally, we present numerical examples and discuss several features of the different methods analyzing advantages and disadvantages of the reduction methods.
منابع مشابه
Error Analysis for POD Approximations of Infinite Horizon Problems via the Dynamic Programming Approach
In this paper infinite horizon optimal control problems for nonlinear high-dimensional dynamical systems are studied. Nonlinear feedback laws can be computed via the value function characterized as the unique viscosity solution to the corresponding Hamilton-Jacobi-Bellman (HJB) equation which stems from the dynamic programming approach. However, the bottleneck is mainly due to the curse of dime...
متن کاملHJB-POD-Based Feedback Design for the Optimal Control of Evolution Problems
The numerical realization of closed loop control for distributed parameter systems is still a significant challenge and in fact infeasible unless specific structural techniques are employed. In this paper we propose the combination of model reduction techniques based on proper orthogonal decomposition (POD) with the numerical treatment of the Hamilton–Jacobi–Bellman (HJB) equation for infinite ...
متن کاملOn the value function for optimal control problems with infinite horizon
In this paper we consider nonautonomous optimal control problems of infinite horizon type, whose control actions are given by L-functions. We verify that the value function is locally Lipschitz. The equivalence between dynamic programming inequalities and HJB inequalities for proximal sub (super) gradients is proven. Using this result we show that the value function is a Dini solution of the HJ...
متن کاملSolving infinite horizon optimal control problems of nonlinear interconnected large-scale dynamic systems via a Haar wavelet collocation scheme
We consider an approximation scheme using Haar wavelets for solving a class of infinite horizon optimal control problems (OCP's) of nonlinear interconnected large-scale dynamic systems. A computational method based on Haar wavelets in the time-domain is proposed for solving the optimal control problem. Haar wavelets integral operational matrix and direct collocation method are utilized to find ...
متن کاملStochastic Optimal Control Problems with a Bounded Memory∗
This paper treats a finite time horizon optimal control problem in which the controlled state dynamics is governed by a general system of stochastic functional differential equations with a bounded memory. An infinite-dimensional HJB equation is derived using a Bellman-type dynamic programming principle. It is shown that the value function is the unique viscosity solution of the HJB equation. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016